Unit 9: Waves Content Outline: Optics (9.7)

I. Optics

- A. This field of physics is the scientific study of the *wave behavior of light*.
- B. Sound and light both transfer energy in the form of waves.
 - 1. The way that sound and light *interact with objects and substances* (*medium*) that they come into contact with is wave behavior.

II. Reflection

- A. This is when a wave hits a *smooth surfaced medium*, <u>cannot</u> pass through and *bounces off* changing direction.
 - 1. Sound waves reflecting off of smooth surfaces are called echos.
- B. Reflection of sound waves is used in sonar technology and by animals as **echolocation**.
- C. Light waves hitting mirrors, polished metal, or any reflective surface are called reflections.

III. Law of Reflection

- A. All waves will bounce off a smooth surface at an *angle opposite* to the angle in which it hit the surface.
 - 1. Incident Ray wave *coming into* the barrier. Drawn as a solid line with an arrow pointing "away" from the object emitting light. (What you are looking at.)
 - 2. **Reflected Ray** wave *leaving* the barrier. Drawn as a solid line with arrow pointing "toward" the collecting device, such as an eye.
 - Angle of Incidence (AI or Θ_I) angle made from incident ray to the normal line.
 a. Θ is the symbol for "angle". It is the Greek letter "theta"
 - 4. Angle of Reflection (AR or Θ_R) angle made from reflected ray to the normal line.
 - 5. Normal Line (NL) the direct head on view of the mirror at a 90° angle with the mirror.
 - 6. Angle of Incidence (AI) = Angle of Reflection (AR).
 - a. Angles made by the incident ray (AI_S or Θ_{IS}) and reflected ray (AR_S or Θ_{RS}) from the surface are also equal to each other.
 - i. All angles <u>must</u> add up to equal 180° (A flat plane is half of a circle ...180°) $O_1 + O_R + O_{1S} + O_{RS} = 180^\circ$

IV. Refraction

- A. This is when a wave is traveling and *changes from one medium to another* which causes the wave to slowdown or speeds up.
 - 1. When the wave changes speed it will *slightly change direction too*.

Example: Sound traveling through areas of different temperature. Light waves changing from air to water, glass, clear plastics cause a change in speed and cause magnification.