Name			

Acceleration Calculations

Acceleration means a change in speed or direction. It can also be defined as a change in velocity per unit of time. It is measured in units such as km/h/s and rn/s/s (m/s²).

$$\alpha = \frac{V_f - V_f}{t}$$

where a = acceleration

 v_r = final velocity

v = initial velocity t = time

Calculate the acceleration for the following data.

	Initial Velocity	Final Velocity	Time	Acceleration
l.	0 km/h	24 km/h	3 s	
2.	0 m/s	35 m/s	5 s	
3.	20 km/h	60 km/h	10 s	
Ч.	50 m/s	150 m/s	5 s	
5.	25 km/h	1,200 km/h	2 min.	

A car accelerates from a standstill to 60 km/h in 10.0 seconds.

What is its acceleration? _____

A car accelerates from 25 km/h to 55 km/h in 30 seconds.

What is its acceleration? _____

A train is accelerating at a rate of 2.0 km/hr/s. Its initial velocity is 20 km/h.

What is its velocity after 30 seconds? _____

A runner achieves a velocity of 11.1 m/s 9 seconds after he begins.

What is his acceleration? _____

What distance did he cover?